Getting Started
Installation
Install from pypi with
pip install ionics_fits
or add to your poetry project with
poetry add ionics_fits
Basic usage
1 import numpy as np
2 from matplotlib import pyplot as plt
3
4 from ionics_fits.models.polynomial import Line
5 from ionics_fits.normal import NormalFitter
6
7 a = 3.2
8 y0 = -9
9
10 x = np.linspace(-10, 10)
11 y = a * x + y0
12
13 fit = NormalFitter(x, y, model=Line())
14 print(f"Fitted: y = {fit.values['a']:.3f} * x + {fit.values['y0']:.3f}")
15
16 plt.plot(x, y)
17 plt.plot(*fit.evaluate())
18 plt.show()
This fits a test dataset to a line model. Here we’ve used a
NormalFitter
which performs maximum-likelihood parameter
estimation, assuming normal statistics. This is the go-to fitter that’s suitable in most
cases.
For more examples, see the Fitter
API documentation.